Module 5: Deep Learning & Neural Networks

Learn deep learning and neural networks including CNN, RNN, and transfer learning. Build powerful neural network models.

Back to Course|4 hours|Beginner

Deep Learning & Neural Networks

Learn deep learning and neural networks including CNN, RNN, and transfer learning. Build powerful neural network models.

Progress: 0/4 topics completed0%

Select Topics Overview

Neural Network Basics

Understand the fundamentals of neural networks and their components.

Content by: Nirav Khanpara

AI/ML Engineer

Connect

What are Neural Networks?

Neural Networks are computing systems inspired by biological neural networks. They consist of interconnected nodes (neurons) that process information and learn patterns from data.

Key Components

  • Input Layer: Receives input data
  • Hidden Layers: Process information
  • Output Layer: Produces predictions
  • Weights: Connection strengths
  • Activation Functions: Non-linear transformations

Implementation with TensorFlow/Keras

Code Example
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt

# Generate sample data
np.random.seed(42)
X = np.random.randn(1000, 20)
y = (np.sum(X, axis=1) > 0).astype(int)

# Split the data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Create the model
model = keras.Sequential([
    keras.layers.Dense(64, activation='relu', input_shape=(20,)),
    keras.layers.Dropout(0.2),
    keras.layers.Dense(32, activation='relu'),
    keras.layers.Dropout(0.2),
    keras.layers.Dense(1, activation='sigmoid')
])

# Compile the model
model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy'])

# Train the model
history = model.fit(X_train, y_train,
                    epochs=50,
                    batch_size=32,
                    validation_split=0.2,
                    verbose=1)

# Evaluate the model
test_loss, test_accuracy = model.evaluate(X_test, y_test, verbose=0)
print(f"Test accuracy: {test_accuracy:.4f}")

# Plot training history
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.tight_layout()
plt.show()
Swipe to see more code

🎯 Practice Exercise

Test your understanding of this topic:

Additional Resources

📚 Recommended Reading

  • Deep Learning by Ian Goodfellow
  • Neural Networks and Deep Learning by Michael Nielsen
  • TensorFlow and Keras Documentation

🌐 Online Resources

  • TensorFlow Tutorials
  • Keras Documentation
  • CNN Architecture Guide

Ready for the Next Module?

Continue your learning journey and master the next set of concepts.

Continue to Module 6